172 research outputs found

    Brief Announcement: Asymmetric Distributed Trust

    Get PDF
    Quorum systems are a key abstraction in distributed fault-tolerant computing for capturing trust assumptions. They can be found at the core of many algorithms for implementing reliable broadcasts, shared memory, consensus and other problems. This paper introduces asymmetric Byzantine quorum systems that model subjective trust. Every process is free to choose which combinations of other processes it trusts and which ones it considers faulty. Asymmetric quorum systems strictly generalize standard Byzantine quorum systems, which have only one global trust assumption for all processes. This work also presents protocols that implement abstractions of shared memory and broadcast primitives with processes prone to Byzantine faults and asymmetric trust. The model and protocols pave the way for realizing more elaborate algorithms with asymmetric trust

    Asymmetric Distributed Trust

    Get PDF
    Quorum systems are a key abstraction in distributed fault-tolerant computing for capturing trust assumptions. They can be found at the core of many algorithms for implementing reliable broadcasts, shared memory, consensus and other problems. This paper introduces asymmetric Byzantine quorum systems that model subjective trust. Every process is free to choose which combinations of other processes it trusts and which ones it considers faulty. Asymmetric quorum systems strictly generalize standard Byzantine quorum systems, which have only one global trust assumption for all processes. This work also presents protocols that implement abstractions of shared memory and broadcast primitives with processes prone to Byzantine faults and asymmetric trust. The model and protocols pave the way for realizing more elaborate algorithms with asymmetric trust

    Linking information reconciliation and privacy amplification

    Get PDF
    Information reconciliation allows two parties knowing correlated random variables, such as a noisy version of the partner's random bit string, to agree on a shared string. Privacy amplification allows two parties sharing a partially secret string about which an opponent has some partial information, to distill a shorter but almost completely secret key by communicating only over an insecure channel, as long as an upper bound on the opponent's knowledge about the string is known. The relation between these two techniques has not been well understood. In particular, it is important to understand the effect of side-information, obtained by the opponent through an initial reconciliation step, on the size of the secret key that can be distilled safely by subsequent privacy amplification. The purpose of this paper is to provide the missing link between these techniques by presenting bounds on the reduction of the Rényi entropy of a random variable induced by side-information. We show that, except with negligible probability, each bit of side-information reduces the size of the key that can be safely distilled by at most two bits. Moreover, in the important special case of side-information and raw key data generated by many independent repetitions of a random experiment, each bit of side-information reduces the size of the secret key by only about one bit. The results have applications in unconditionally secure key agreement protocols and in quantum cryptograph
    • …
    corecore